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A numeric algorithm is proposed that is suitable to calculate
pectral lineshapes influenced by isotropic and anisotropic tum-
ling under sample spinning conditions. It is based on the stochas-
ic Liouville equation and a rotational diffusion process described
y a stationary Markov operator. A corresponding FORTRAN
rogram can be implemented on a regular personal computer. The
alculations result in spectral lineshapes including a complete set
f spinning sidebands. The sensitive time scale of the resulting
ineshapes depends on the deviation of the sample spinning axis
rom the magic angle. An example is presented demonstrating the
otential of off-magic-angle spinning as a tool to analyze slow
umbling motions. © 1999 Academic Press

INTRODUCTION

The application of sample spinning in magnetic reson
pectroscopy offers a variety of advantages that have led
xtensive use in the past (1–5). The gain in signal-to-noise rat
nd the possibility to avoid overlap between adjacent sig
ay be the most important improvements achieved by
rocedure. In addition, the technique may be used to dete

he elements of a chemical shift tensor (6–8).
However, the method of sample spinning also complic

he analysis of NMR spectra, especially when it come
nalyzing slow motions. A number of approaches have
eveloped to simulate magic angle spinning (MAS) spectr

he basis of jump motions between two or three sites (5, 9–12)
r in cases where no motionally induced relaxation is pre
13–16), but so far, to the knowledge of the author, no atte
as been made to describe diffusive motion in connection
ample spinning.
In the following, a numeric algorithm is proposed to per

ne to calculate spectra based on molecular tumbling in
resence of anisotropic chemical shift under sample spin
onditions. The procedure is based on the introduction of s
teps in three Euler angle domains and in time, similar t
lgorithm proposed for static spectra that has been desc
efore (17). The simulated spectra exhibit rotational sideba
ith relative intensities that are in accordance with res
erived from analytical determinations (6). As expected, mo

ecular tumbling strongly affects the efficiency of MAS a
ay lead to a significant line broadening, the linewidth be
in
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function of motional correlation times. Finally, it is sho
ow a small deviation from the magic angle may be use

ncrease the significance of variations of the spectral linesh
ith the tumbling rate.

THEORETICAL CONSIDERATIONS

umerical Calculation of NMR Spectra

The time-dependent ensemble average magnetization o
pin system can be conveniently described by the de
peratorr(t) (18, 19). In the presence of a time-independ
amilton operator and disregarding any other source of r
tion, it develops according to

­

­t
r~t! 5 2i /\@H, r~t!#. [1]

nder static conditions (no MAS), the Hamiltonian depend
he molecular orientation with respect to a given sample
ainer, marked by a set of Euler anglesV n. This leads to a
ngular dependence ofr and H. With sample spinning, th
amiltonian for each molecular orientationV n also become

ime dependent. Therefore, Eq. [1] converts to

­

­t
r~Vn, t! 5 2i /\@H~Vn, t!, r~Vn, t!#. [2]

oreover, motional processes in a discretized diffusion sp
ead to an exchange of magnetization between the orienta

n described by a set of rate constantsk(Vn3Vn9) (17):

­

­t
r~Vn, t! 5 2i /\@H~Vn, t!, r~Vn, t!#

1 O
n9

$2k~Vn3Vn9!@r~Vn, t! 2 r eq~Vn!#

1 k~Vn93Vn!@r~Vn9, t! 2 r eq~Vn9!#%. [3]

he time dependence of the density matrix elements fo
rientationsV n is thus completely described by a set of c
led differential equations. The actual signal contribution
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133CALCULATION OF MAS SPECTRA
ach orientationV n in the rotating frame is then given
(V n, t) } Tr[r(V n, t)I 1]. We now introduce short tim

ntervalsDt as an equivalent to the experimental dwell tim
ithin such a (sufficiently short) time interval, the effect
otion may be separated from the effect of Larmor preces
ased on this approximation, the signal contributionM(V n,
1 Dt) is derived fromM(V n, t) by (17)

M~Vn, t 1 Dt! 5 M~Vn, t!exp~iv~Vn, t!Dt!

1 O
n9

@2k~Vn3Vn9!DtM~Vn, t!exp~iv~Vn, t!Dt!

1 k~Vn93Vn!DtM~Vn9, t!exp~iv~Vn9, t!Dt!#. [4]

ith the initial values ofM(V n, 0) set to the equilibrium
opulations of the sites in molecular orientationV n,

M~Vn, 0! 5 Peq~Vn!, [5]

nd the overall value of the detectable free induction d
iven by

M tot~t! 5 O
n

M~Vn, t!, [6]

q. [4] describes the time-dependent variation of an N
ignal after ap/2-pulse. Accordingly, the free induction dec
FID) can be numerically calculated in an iterative proced
17) until its absolute value decreases to less than one
andth of the original intensity. At any time during the evo
ion of the FID, the effect of ap-pulse may be simulated b
imply inverting the real or the imaginary part of all contri
ions M(V n, t) (17). The desired spectral lineshape is fina
btained by Fourier transformation.
In order to derive MAS spectra in the presence of rotati

iffusion according to Eqs. [4] to [6], it is necessary to de
ppropriate expressions (a) for the orientation and, becau
ample spinning, time-dependent Larmor frequenciesv(V n, t)
or each siteV n, and (b) for the rate constantsk(Vn3Vn9). These
ill be derived in the next sections.

rientation and Time Dependence of the Larmor
Frequencyv(Vn, t)

The basic set of coordinate systems necessary to descri
ffect of sample rotation in the presence of rotational diffu

s given in Fig. 1. In the most general case, four system
eference are required. However, for isotropic tumbling,
inimum number of systems is reduced to three. All exam

llustrated in the following sections are calculated for isotro
otational diffusion.

(a) Magnetic tensor system.The magnetic tensor syste
s defined by the orientation of the interaction tensor,
 M
.

n.

y

e
u-
-

l

of

the
n
of
e
s

c

.,

he Hamiltonian for chemical shift anisotropyH CS 5
\IsB. Within this reference frame, only diagonal eleme
f the shielding tensors xx, s yy, s zz exist. For13C-nuclei in
number of representative molecules, actual values fos xx,
yy, ands zz have been determined applying various ex

mental techniques (20). Correspondingly, the chemic
hift anisotropy tensor in the magnetic tensor system
iven by

s M 5 Ssxx 0 0
0 syy 0
0 0 szz

D . [7]

(b) Diffusion tensor system.This reference frame is dete
ined by the symmetry and the shape of the molecul

oincides with the long and two short axes of a hypothe
llipsoid that most closely resembles the averaged mole
eometry. The expression for the chemical shift tensor in
iffusion tensor systemsD results fromsM by application of a
orresponding Euler transformation (21):

s D 5 TMDsMTMD21. [8]

n the case of isotropic rotation, the diffusion tensor system
e chosen to be identical to the magnetic tensor sy
sD 5 sM).

(c) Sample system.The sample system is defined by
eometry of the sample container, e.g., the rotor of the a
AS experiment, thez -axis coinciding with its symmetr

FIG. 1. Set of coordinate systems and Euler transformation angle
uired for a general description of anisotropic diffusion under sample spi
onditions. In the magnetic tensor system, the interaction tensor matri
xample,sM) consists of diagonal elements only. The axes of the diffu

ensor system coincide with the long and the two short rotation axes
olecule. Thez-axis of the sample system is identical with the rotation ax

he rotor; thez-axis of the laboratory system is defined by the direction o
xternal magnetic field. The diffusive motion of the molecules is characte
y jump motions between sites inF, Q, and C; the sample rotation
escribed bya(t) and a tilt angleb. In the case of isotropic rotation, the res
oes not depend onf, u, and c (which therefore are set to zero for t
xamples in the text).
s y
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134 C. MAYER
rotation) axis. Again, the corresponding chemical shift te
s obtained by a Euler transformation (21):

s S 5 TDS~Fk, Q l, Cm!s DTDS21~Fk, Q l, Cm!. [9]

he Euler anglesF k, Q l , andCm describe the orientationV of
he molecule with respect to the MAS rotor.

(d) Laboratory system. The laboratory system is dete
ined by the orientation of the NMR magnet, itsz-axis de-

cribing the orientation of the magnetic field. Here, the rele
hemical shift tensor is derived as

s L 5 TSL~a, b, g!s STSL21~a, b, g!. [10]

ecause of the axial symmetry of the magnetic field, the r
oes not depend on the Euler angleg, which therefore can b
et to zero. The angleb describes the orientation of the rotat
xis versus the magnetic field (e.g., 54.7° in the case of M
hile a is time dependent with the frequency of sample r

ion vr according to

a~t! 5 v rt. [11]

ith the Euler transformations given above, the chemical
ensor in the laboratory system is represented by

s L 5 TSL~a~t!, b, 0!s STSL21~a~t!, b, 0!. [12]

ith

TSL 5 Scosb cosa cosb sin a 2sin b
2sin a cosa 0

sin b cosa sin b sin a cosb
D [13]

nd

TSL21 5 Scosb cosa 2sin a sin b cosa
cosb sin a cosa sin b sin a

2sin b 0 cosb
D , [14]

he relevantzz-element of this tensor results in

s zz
L 5 sin b cosa~sin b cosas xx

S 1 sin b sin as xy
S

1 cosbs xz
S ! 1 sin b sin a~sin b cosas yx

S

1 sin b sin as yy
S 1 cosbs yz

S !

1 cosb~sin b cosas zx
S

1 sin b sin as zy
S 1 cosbs zz

S !. [15]

his value is identical with the orientation and time-depen
r

nt

lt

),
-

ift

t

armor frequency in the rotating framev(V n, t), the final
esult therefore becomes

s zz
L ~Vn, t! 5 s zz

L ~Fk, Q l, Cm, t!

5 @cos2bs zz
S # 1 sin2~v rt!@sin2bs yy

S #

1 cos2~v rt!@sin2bs xx
S # 1 sin~v rt!cos~v rt!

3 @sin2b~s xy
S 1 s yx

S !#

1 sin~v rt!@sin b cosb~s yz
S 1 s zy

S !#

1 cos~v rt!@sin b cosb~s xz
S 1 s zx

S !#, [16]

ith the elements ofsS given by

s S 5 TDS~Fk, Q l, Cm!s DTDS21~Fk, Q l, Cm!. [17]

ith v(Vn, t) 5 v0szz
L(Vn, t) and by combining Eqs. [16] an

17], an expression for the time-dependent Larmor frequen
he rotating frame can be derived for any given molecular o
ationVn (specified byFk, Ql, andCm) in the sample system.

otionally Induced Exchange Processes k(Vn3Vn9)

It is assumed that rotational diffusion leads to a continu
xchange of individual molecules between the given orie

ions V n. Generally, the motion of an ellipsoid in a visco
edium is described by two correlation timesti and t',

eferring to rotational diffusion along the long axis and the
hort axes, respectively. Based on relative populationsPrel 5
P/Peq) of orientations given by Euler anglesF, Q, andC, the
orresponding diffusion operator can be formulated as (22, 23)

GdifPrel 5
­Prel

­t
[18]

Gdif 5
1

6t i

­ 2

­F 2 1
1

6t'
S ­ 2

­Q 2 1 cot2Q
­ 2

­F 2 1
1

sin2Q

­ 2

C 2

2 2
cot Q

sin Q

­ 2

­F­C
1 cot Q

­

­QD , [19]

hich may be separated into its angular contributions:

GF 5
1

6t i

­ 2

­F 2 1
1

6t'

cot2Q
­ 2

­F 2 [20]

GQ 5
1

6t'

­ 2

­Q 2 1
1

6t'

cot Q
­

­Q
[21]

GC 5
1

6t'

1

sin2Q

­ 2

­C 2 [22]

GFC 5
1

6t S22
cot Q

sin Q

­ 2

­F­CD . [23]

'
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135CALCULATION OF MAS SPECTRA
he described relaxation model requires the segmentati
he diffusion sphere. This results in the definition of disc
ngular sitesV n specified by sets of Euler anglesF k, Q l , and

m. With

nF sites betweenFmin 5 0 andFmax 5 2p

~andDF 5 2p/nF!

nQ sites betweenQmin 5 0 andQmax 5 p

~andDQ 5 p/nQ!

nC sites betweenCmin 5 0 andCmax 5 2p

~andDC 5 2p/nC!,

n overall number ofn 5 nFnQnC discrete orientationsV n is
btained. Consequently, the diffusion operatorG now yields a
et of rate constants describing the exchange rates be
djacent sites differing in one or two Euler angles:

k~Fk 3 Fk11! 5 k~Fk 3 Fk21!

5 S 1

6t i
1

1

6t'

cot2QD 1

~DF! 2 [24]

k~Q l 3 Q l61! 5
1

6t'

Îsin Q l61

Îsin Q l

1

~DQ! 2 [25]

k~Cm 3 Cm11! 5 k~Cm 3 Cm21! [26]

5
1

6t'

1

sin2Q

1

~DC! 2

kS Fk 3 Fk11

Cm 3 Cm11
D 5 kS Fk 3 Fk21

Cm 3 Cm21
D

5 2
1

6t'

2
cotQ

sin Q

1

4~DF!~DC!
[27]

kS Fk 3 Fk11

Cm 3 Cm21
D 5 kS Fk 3 Fk21

Cm 3 Cm11
D

5
1

6t'

2
cot Q

sin Q

1

4~DF!~DC!
. [28]

ith the corresponding normalized distribution functi
hich in the absence of an orienting potential becomes

Peq~Vn! 5 Peq~FkQ lCm! 5
sin Q l

nFnC ¥ l 9 sin Q l 9
5

sin Q l

c
,

[29]
of
e

en

,

he expressions for the rate constants automatically fulfil
ondition for detailed balance:

Peq~Vn!k~Vn3Vn9! 5 Peq~Vn9!k~Vn93Vn!. [30]

ny deviation from the equilibrium populations leads to a
hange of site populations with time determined by the
onstants. For an infinite number of sites, the time depend
P(V n)/­t derived from first-order kinetics is equivalent to
xpression given by the diffusion operator. This is don

ustify the expressions [24] to [28], as may be shown in
ollowing for the example ofk(Q l 3 Q l 9).

Consider three adjacent sites 1, 2, and 3 withQ1, Q2, andQ3.
hen the time dependence of the absolute population of

s given by

dP2

dt
5 k~Q13Q2!P1 2 k~Q23Q1!P2

1 k~Q33Q2!P3 2 k~Q23Q3!P2, [31]

hich according to Eq. [25] yields

dP2

dt
5

1

6t'

1

~DQ! 2 S Îsin Q2

Îsin Q1

P1 2
Îsin Q1

Îsin Q2

P2

1
Îsin Q2

Îsin Q3

P3 2
Îsin Q3

Îsin Q2

P2D , [32]

nd, withP 5 PrelPeq and Eq. [29]:

dP2

dt
5

1

c6t'

1

~DQ! 2 ~sin Q12P1rel 2 sin Q12P2rel

1 sin Q23P3rel 2 sin Q23P2rel!, [33]

here sinQ nm stands for=sin Q nsin Qm. Rearrangement o
q. [33] yields

dP2

dt
5

1

c6t'

1

~DQ! 2 @sin Q23~P3rel 2 P2rel!

2 sin Q12~P2rel 2 P1rel!#

5
1

c6t'

1

DQ Fsin Q23SP3rel 2 P2rel

DQ D
2 sin Q12SP2rel 2 P1rel

DQ DG . [34]
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136 C. MAYER
ith infinitesimally small angular stepsDQ, Eq. [34] may be
rought into a differential form:

dP2

dt
5

1

c6t'

­

­Q Fsin QS ­P

­QDG
5

1

c6t'
Fsin QS ­ 2P

­Q 2D 1 cosQS ­P

­QDG [35]

dP2rel

dt
5

1

sin Q6t'
Fsin QS ­ 2P

­Q 2D 1 cosQS ­P

­QDG
5

1

6t'
S ­ 2P

­Q 2D 1
1

6t'

cot QS ­P

­QD . [36]

he last expression is essentially identical to Eq. [21]. S
arly, the procedure described above can be reproduced f
ther rate constants to prove their validity.

GENERAL PROCEDURE

All computations were performed on a regular pers
omputer applying a FORTRAN program based on the
cribed formalism. Alternatively, the algorithm can be imp
ented on common spreadsheet software, as described

or the calculation of static NMR spectra (17). However, be
ause of the necessity of an additional angular sphere fo
imulation of MAS spectra, the spreadsheet approach su
rom serious storage limitations and therefore remains
tricted to simple problems.
An important requirement for reliable results is a suita

election of values for the four key parameters of the num
alculation: the numbers of sitesnF, nQ, andnC for the three
ngular domains, and the length of the time intervalDt in the

ime regime. As a first condition, the site number should
arge enough to avoid visible gaps between the angular
ributions to the spectral lineshape. Very slow molecular t
ling with correlation times larger than the reciprocal chem
hift anisotropy typically requires site numbers ofnF 5 nQ 5

C . 40. As a second condition, the time intervalDt has to be
hosen short enough to allow the approximation describe
q. [4]. As a rule of thumb, not more than 10% of the gi
agnetization of any site should be transferred in the cour
ach time interval. In any case, as a final verification of
esult, the spectral lineshape should be checked for co
ence with increasing site numbers and decreasingDt. Com-
utation times depend strongly on the specific problem. T
ary between 5 min for spectra based on rapid tumbling
2 h for slow motional lineshapes with correspondingly la
ite numbers. All results given in the next section were
ained within less than 3 h per spectrum.

If the diffusive motion is either extremely rapid or extrem
low, the described algorithm becomes inefficient becau
he resulting long relaxation period. In this case, an altern
ativa
i-
the

l
-

-
fore

he
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e-
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l
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of
e
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d

e
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e

pproach, which limits the simulation to a single period of
AS experiment and neglects relaxation due to molec
otion (or replaces it by a phenomenological term), is stro

ecommended (13–15). For additional convenience, it may
ombined with a simplified powder averaging proced
14–16).

REPRESENTATIVE RESULTS

ffect of Rotation Frequency

An example of calculated MAS spectra obtained under

FIG. 2. Calculated MAS spectra obtained under variation of the spin
requency. The interaction tensor is assumed to represent chemica
nisotropy with tensor elementss xx 5 215 kHz,s yy 5 25 kHz, ands zz 5
0 kHz. The molecular motion responsible for a significant distortion o
riginal powder pattern is a simulated isotropic tumbling withti 5 t' 5 0.1
s, which is approximated by jump processes between 13*13*13 sites f

hree angular domains. The original FIDs where obtained in 80,000
ntervals of 30 ns duration. All spectra are normalized to identical area
ntensity axis is suitably expanded.
tion of the spinning frequency is shown in Fig. 2. The inter-
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137CALCULATION OF MAS SPECTRA
ction tensor is assumed to represent chemical shift aniso
ith tensor elementss xx 5 215 kHz,s yy 5 25 kHz, ands zz

20 kHz. The molecular motion responsible for a signific
istortion of the original powder pattern (see Fig. 2 atvr/2p 5
kHz) is a simulated isotropic tumbling withti 5 t' 5 0.1
s. With 13*13*13 sites and 80,000 time intervalsDt
30 ns) for the complete FID, the computation time wa

he range of 25 min. All spectra are normalized; the inten
xis is suitably expanded.
As expected, the static spectrum (vr/2p 5 0 kHz) exhibits

he well-known features of a powder pattern slightly affec
y isotropic diffusion. With increasing frequency of sam
pinning, the rotational sidebands appear, move away from
ero frequency, and lose intensity to the centerband.

ariation of Tumbling Rate

The effect of various correlation times on calculated M
pectra is shown in Fig. 3. The tensor elements are the sa
efore; the spinning frequency is set tovr/2p 5 10 kHz.
orrelation times of isotropic tumbling (ti andt') are varied
etween 0.01 and 1 ms. Again, site numbers for the an
omains were set to 13*13*13.
Only for the largest value (ti 5 t' 5 1 ms) do the cente

and and all sidebands appear to be well separated.
elative intensitiesI 20kHz/I 0 5 0.107, I 10kHz/I 0 5 0.274,
210kHz/I 0 5 0.420, andI 220kHz/I 0 5 0.049 are ingood accor
ance with values determined by the procedure of Herzfeld
erger (6), which yieldsI 20kHz/I 0 5 0.113,I 10kHz/I 0 5 0.279,

210kHz/I 0 5 0.426, andI 220kHz/I 0 5 0.053. Following the
roposition by Maricq and Waugh (5), the linewidth of the
enterband can be used to determine the correlation time
sotropic diffusion, as its dependence on the tumbling ra
ignificant within the given time scale.

imulated Off-Angle Spinning

In most cases, spectroscopists deal with numerous pot
ources of linewidth variation. Typical examples may be
omplete suppression of dipolar coupling and conformati
somerization. Therefore, it is desirable to create experim
onditions that lead to spectral features that reflect mot
arameters more significantly than just the linewidth.
ossibility is to apply sample rotation at an offset to the m
ngle (see, for example,24–27). A small offset results i
pectra with centerbands roughly resembling the linesh
btained under static conditions. However, as the overall
idth is significantly reduced, they still offer the advantage

mproved signal-to-noise ratio and reduced overlap of adja
ignals.
Figure 4 shows calculated results based on parameters

efore (s xx 5 215 kHz,s yy 5 25 kHz, ands zz 5 20 kHz,
r/2p 5 10 kHz), but with a rotation angle ofb 5 50° instead
f 54.7° and for correlation timest 5 ti 5 t' of 0.3 to 10 ms
he site numbers vary from 17*17*17 to 27*27*27 and co
mt
py

t

n
y

d

he

as

lar

eir

nd

the
is

tial
-
al
al
al
e
c

es
e-
f
nt

en

-

utation times from 1 h to almost 3 h depending on th
umbling rate. The second left sideband, the centerband
he second right sideband of each resulting spectrum ar
layed separately; both sidebands are magnified by a fac
0 for better resolution.
In this case, the spectra not only differ in the linewidth of

ignal, but also show significant variation in character
eatures. The lineshape of the centerband deviates str
rom the lineshapes of the sidebands, which is explained b
ngular dependence of the sideband intensities. A compa
ith Fig. 3 also shows that the sensitive time scale has sh

FIG. 3. Simulated MAS spectra obtained under variation of the t
ling rate. Again, the interaction tensor is assumed to represent che
hift anisotropy with tensor elementss xx 5 215 kHz,s yy 5 25 kHz, and

zz 5 20 kHz. The spinning frequency is set tov r/2p 5 10 kHz.
orrelation times of isotropic tumbling (t 5 t i 5 t') are varied betwee
.01 and 1 ms; the motion is approximated in 13*13*13 sites for the
ngular domains. The spectra are derived from FIDs calculated in 8
teps of 30 ns duration.
oward slower motions. This indicates the partial averaging of
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138 C. MAYER
he tensor by sample rotation and may be used to var
ynamic range of the experiment.

CONCLUSION

The described approach allows numerical calculation of s
ral lineshapes based on isotropic and anisotropic tumbling u
ample spinning conditions. Implemented in a FORTRAN
ram or even, for simple cases, as a spreadsheet, it can be
ny regular personal computer. Additional experimental or
le conditions such asp-pulses, orienting potentials, or any d
iation from the magic angle are easily introduced. Off-ma
ngle spinning presents a promising experimental approa
aximize the sensitivity of spectral lineshapes toward varia
f the tumbling rates.
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