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A numeric algorithm is proposed that is suitable to calculate a function of motional correlation times. Finally, it is shown
spectral lineshapes influenced by isotropic and anisotropic tum- how a small deviation from the magic angle may be used t

bling under sample spinning conditions. It is based on the stochas-  jncrease the significance of variations of the spectral lineshap
tic Liouville equation and a rotational diffusion process described with the tumbling rate.

by a stationary Markov operator. A corresponding FORTRAN
program can be implemented on a regular personal computer. The
calculations result in spectral lineshapes including a complete set
of spinning sidebands. The sensitive time scale of the resulting
lineshapes depends on the deviation of the sample spinning axis
from the magic angle. An example is presented demonstrating the The time-dependent ensemble average magnetization of a
potent_ial of qff-magic-angle spinning as a tool to analyze slow spin system can be conveniently described by the densi
tumbling mOtons.  © 1909 Acadernic Pres operatorp(t) (18, 19. In the presence of a time-independent
Hamilton operator and disregarding any other source of rela
ation, it develops according to

THEORETICAL CONSIDERATIONS

Numerical Calculation of NMR Spectra

INTRODUCTION

The application of sample spinning in magnetic resonance ot p(t) = —i/A[H, p(V)]. (1]
spectroscopy offers a variety of advantages that have led to its

extensive use in the past{9). The gain in signal-to-noise ratio ynpger static conditions (no MAS), the Hamiltonian depends o
and the possibility to avoid overlap between adjacent signglg molecular orientation with respect to a given sample cor
may be the most important improvements achieved by thigner, marked by a set of Euler angl@s. This leads to an
procedure. In addition, the technique may be used to determg}%mar dependence @f and H. With sample spinning, the
the elements of a chemical shift tens6r@g). Hamiltonian for each molecular orientatidd, also becomes

However, the method of sample spinning also complicatgs,e dependent. Therefore, Eq. [1] converts to
the analysis of NMR spectra, especially when it comes to

analyzing slow motions. A number of approaches have been

developed to simulate magic angle spinning (MAS) spectra on 3 p(Qn, 1) = —ilA[H(Q,, 1), p(Q,, O)]. [2]
the basis of jump motions between two or three sife 9129

or in cases where no motionally induced relaxation is present _ ) ) . .
(13-16, but so far, to the knowledge of the author, no attem oreover, motional processes in a discretized diffusion sphe

has been made to describe diffusive motion in connection wifd t0 an exchange of magnetization between the orientatio
sample spinning. ), described by a set of rate constak{s, . oy (17):

In the following, a numeric algorithm is proposed to permit ;
one to calculate spectra based on molecular tumbling in the? L
presence of anisotropic chemical shift under sample spinningot (Qn, ) = =I/A[H(Qy, ), p(Qy, D]
conditions. The procedure is based on the introduction of small
steps in three Euler angle domains and in time, similar to an
algorithm proposed for static spectra that has been described
before (7). The simulated spectra exhibit rotational sidebands + Kan anlp(Qn, 1) = p*(Q) 1} [3]
with relative intensities that are in accordance with results
derived from analytical determination6)( As expected, mo- The time dependence of the density matrix elements for g
lecular tumbling strongly affects the efficiency of MAS andrientations(},, is thus completely described by a set of cou
may lead to a significant line broadening, the linewidth beingled differential equations. The actual signal contribution fo
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each orientation(),, in the rotating frame is then given by magnetic tensor system: oM
M(Q,, t) = Tr[p(Q,, t)I"]. We now introduce short time o 0 v
intervalsAt as an equivalent to the experimental dwell time. .’
Within such a (sufficiently short) time interval, the effect of diffusion tensor system: oD
motion may be separated from the effect of Larmor precession. 20T
Based on this approximation, the signal contributMdi(},,
t + At) is derived fromM(Q,, t) by (17)
sample system: oS
M(Qy t+ A = M(Q,, Dexplio(Q, DAY
+ 2 [—Kean—omAtM(Q,, tyexpliw(Q,, t)At) laboratory system: ot
o
. FIG. 1. Set of coordinate systems and Euler transformation angles re
+ k(Qn’eQn)AtM(Qn’a t)eXF(“U(Qn'a t)At)]- [4] quired for a general description of anisotropic diffusion under sample spinnin

conditions. In the magnetic tensor system, the interaction tensor matrix (f

With the initial values OfM(Qn, 0) set to the equmbrlum example,o) consists of diagonal elements only. The axes of the diffusior

opulations of the sites in molecular orientatifin tensor system coincide with the long and the two short rotation axes of tf
pop ! molecule. Thez-axis of the sample system is identical with the rotation axis of

the rotor; thez-axis of the laboratory system is defined by the direction of the
M(Q,, 0) = Pef(£,), [5] external magnetic field. The diffusive motion of the molecules is characterize
by jump motions between sites i®, ®, and WV; the sample rotation is

. . described byx(t) and a tilt angles. In the case of isotropic rotation, the result
and the overall value of the detectable free induction decgy.. . depend om, 6, and y (which therefore are set to zero for the

given by examples in the text).

Mtot(t) = E M(Qm t)! [6]
n the Hamiltonian for chemical shift anisotrophcs =

vh1oB. Within this reference frame, only diagonal element:

Eq. [4] describes the time-dependent variation of an NMBf the shielding tensow,,, oy, 0, exist. For**C-nuclei in

signal after am/2-pulse. Accordingly, the free induction decaya number of representative molecules, actual valuesfgr

(FID) can be numerically calculated in an iterative procedukg,,, and o ,, have been determined applying various exper

(17) until its absolute value decreases to less than one thamental techniques20). Correspondingly, the chemical

sandth of the original intensity. At any time during the evolushift anisotropy tensor in the magnetic tensor system |

tion of the FID, the effect of ar-pulse may be simulated by given by

simply inverting the real or the imaginary part of all contribu-

tions M(Q,, t) (17). The desired spectral lineshape is finally

obtained by Fourier transformation. oM = (
In order to derive MAS spectra in the presence of rotational

diffusion according to Egs. [4] to [6], it is necessary to define

appropriate expressions (a) for the orientation and, because of o ) )

sample spinning, time-dependent Larmor frequenai® ., t) (b) Diffusion tensor system.This reference frame is deter-

for each sitef),,, and (b) for the rate constarkg,_.an,. These mined by the symmetry and the shape of the molecule.
will be derived in the next sections. coincides with the long and two short axes of a hypothetice

ellipsoid that most closely resembles the averaged molecul
geometry. The expression for the chemical shift tensor in th
Orientation and Time Dependence of the Larmor diffusion tensor systera® results froma™ by application of a
Frequencyw({1,, t) corresponding Euler transformatio®1j:

on O 0
0 oy, 0 |. [7]
0 0 o,

The basic set of coordinate systems necessary to describe the 5 D NeMD 1
effect of sample rotation in the presence of rotational diffusion o-=T"c"T : (8]
is given in Fig. 1. In the most general case, four systems of
reference are required. However, for isotropic tumbling, tHa the case of isotropic rotation, the diffusion tensor system ce
minimum number of systems is reduced to three. All examples chosen to be identical to the magnetic tensor syste
illustrated in the following sections are calculated for isotropi@® = o).
rotational diffusion. (c) Sample system.The sample system is defined by the
(&) Magnetic tensor system.The magnetic tensor systemgeometry of the sample container, e.g., the rotor of the actu
is defined by the orientation of the interaction tensor, e.dIAS experiment, thezi-axis coinciding with its symmetry
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(rotation) axis. Again, the corresponding chemical shift tensharmor frequency in the rotating frame({(},, t), the final
is obtained by a Euler transformatioRlj: result therefore becomes

O-S: TDS(q)kv ®I! \Pm)UDTD871((I)k1 ®I1 q}m) [9] O-IZ_Z(Qni t) = O-Iz_z(q)ki ®|1 \I’mi t)
[cos’Boy,] + sin*(wt)[sin’Bay,]

The Euler angled,, ©,, and¥,, describe the orientatiof of L, _

the molecule with respect to the MAS rotor. + cos(wt)[sin’Boy] + sin(wt)cogwt)
(d) Laboratory system.The laboratory system is deter- X [sin®B(ay, + a3)]

mined by the orientation of the NMR magnet, #saxis de- i i S S

scribing the orientation of the magnetic field. Here, the relevant +sin(wt)[sinBcos oy, + 03]

chemical shift tensor is derived as + codwt)[sinB cosB(as,+ o)1, [16]

ot =T™a, B, V)T Ha, B, v). [10]  with the elements o&° given by

Because of the axial symmetry of the magnetic field, the result o= T(d,, 0, ¥, )T YD, 0, ¥,). [17]
does not depend on the Euler anglewhich therefore can be

set to zero. The ang|e describes the orientation of the rotationyjth (0, t) = weo (2, t) and by combining Egs. [16] and
axis versus the magnetic field (e.g., 54.7° in the case of MA$)77], an expression for the time-dependent Larmor frequency |
while o is time dependent with the frequency of sample rotgne rotating frame can be derived for any given molecular orier
tion w, according to tation 2, (specified byd,, ®,, and¥,,) in the sample system.

a(t) = ot. [11] Motionally Induced Exchange Processes, Ko,

) ) ) ) It is assumed that rotational diffusion leads to a continuou
With thfa Euler transformations given above, the chemical Sh@(change of individual molecules between the given orient:
tensor in the laboratory system is represented by tions Q. Generally, the motion of an ellipsoid in a viscous

medium is described by two correlation timeg and 7,
ot =Ta(t), B, 00¢°T> Hal(t), B, 0).  [12] referring to rotational diffusion along the long axis and the tw
short axes, respectively. Based on relative populatigs=
With (P/P.,) of orientations given by Euler angldg ®, and¥, the
corresponding diffusion operator can be formulated?2s 23

(cosB cosa cosBsina  —sin B)
TSt —sina cosa 0 [13] _ P
sinBcosa sinBsina  cosp FarPra = 53 [18]
and ro 1 92 1 /9° 26 a? 1 92
= G ad? 67, \ 002 OO 592 T gine w2
cospcosa —sina sinBcosa _ s cot® 9? + cot® J [19]
TSL-1= | cosBsina cosa sinBsina [14] sSin® 9gdow 00/’
—sinB 0 cosp

which may be separated into its angular contributions:
the relevanizzelement of this tensor results in

1 92 1 a2
_ - 2
ok, = sin B cosa(sin B cosaa, + sin B sin aos, Ly = 67 9D? + s, Cot 0 52 [20]
+ cosBoy,) + sinBsina(sinfcosacy, 1 9? ] 21]
lNy=—773+=—cot® — 21
+ sinBsinac$, + cosBos) © 61,907 67, 90
+ cosp(sinB cosacs, _ 11 e
Py =6; sine aw? [22]
+ sinBsinacy, + cosBoy). [15] +
1 cot® 9?2
. U _ . Top=o | -2, [23]
This value is identical with the orientation and time-dependent 67, sin® 9dow
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The described relaxation model requires the segmentationtioé expressions for the rate constants automatically fulfill th
the diffusion sphere. This results in the definition of discreteondition for detailed balance:
angular site€), specified by sets of Euler anglds, 0, and
V.. With
Peq(*Qn)k(s)naQn’) = Peq(Qn’)k(nn’ﬁQn)- [30]

ne sites betweed;, = 0 and®,,,, = 27
Any deviation from the equilibrium populations leads to a ne
(andA® = 27/ngy) change of site populations with time determined by the rat
constants. For an infinite number of sites, the time dependen
aP(Q,)/at derived from first-order kinetics is equivalent to the
expression given by the diffusion operator. This is done t
(andA® = m/ne) justify the expressions [24] to [28], as may be shown in th
ny sites betweet,, = 0 and¥, , = 27 foIIowing for the exe_lmple ok(@. — 0,). _
Consider three adjacent sites 1, 2, and 3 With®,, and® .
(andAW = 27/n,), Then the time dependence of the absolute population of site
is given by

ne sites betwee®,;,, = 0 and®,,, = =

an overall number o = ngnen, discrete orientation§),, is
obtained. Consequently, the diffusion operdtanow yields a @ _ K P _ K P
set of rate constants describing the exchange rates between dt "m0t 1 RO2-6n7 2

adjacent sites differing in one or two Euler angles:
+ k((“)34>®2)P3 - k((-)2~>(~)3)P2| [31]

k(b — ®y,1) = k(d, = D))
k kil k Kt which according to Eq. [25] yields

—(1 L ocote) 24
—677_”+67LC0t W []

dpP, 1 1 \Sin O, \Sin O,
. —_— = —_— - —
k( — @ ) _ i \’/Sln ®|il 1 [25] dt 6TL (A®)2 \/Sin @1 ! \,Sin ®2 P2
' 6T, (sin®, (AO)?
by ' \Sin ©, \Sin 0O, 3
KW = Wpes) = k(T — Wy [26] t e, 2 sne, 7 132
_ 1 1 1
67, sin’O (AV)? and, withP = PP, and Eq. [29]:
k( b — q)k+1> - k( ® — (Dk—l)
\I’m - \I,erl B \Pm - \mel dP2 1 1 ) .
o ) ot ® 1 . At~ cbr, (A©)? (SIN O ;P11 — SIN O 5Py
~ 67, " sin0® 4(AD)(AV) [27] + 8iN O 3P — SIN O 1Py, [33]
k( d — ‘I’k+1> _ k( b, — (Dk—l)
Yy = Vo, Yy = Vo where sin®,,, stands for\/sin ®,sin ©,,. Rearrangement of
1 , cot® 1 s Eq. [33] yields
= 6r. 2sin® a(Ad)(aw) . 128
P _ _1 [SiN 0 ,5(Parel — Pore)
At T AR- A2 Sln v rel - rel
With the corresponding normalized distribution function, dt 67, (A®)* e ’
which in the absence of an orienting potential becomes — 5N O15(Pyres — Prre)]
1 1 |: in® (PSreI - I:)Zrel)
sin® sin® = e A@ | SINOg| ——
Peq(Qn) = Peq(q)k(al\llm) = Nan 2 Slin ® = c : ) C6TL A® A®
e ' PZreI - I:)1rel
[29] —sin 12< AG))] . [34]
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With infinitesimally small angular steps®, Eq. [34] may be 7
brought into a differential form:
P, 1 9 [ aP ol2n= 0kHz
dt ¢, 00 | SN B
1 , @(aZP @(aP 3
= 61, sin 762 + cos 70 [35]
AP 1 o P of P 5 kHz
dt _sine@er, | " 2\ae2) T %50 —
1 (a%P 1 aP 26
“6r, 1907 T6r, ° : [36]

6.25 kHz |
|

The last expression is essentially identical to Eq. [21]. Simi-

larly, the procedure described above can be reproduced for the
other rate constants to prove their validity.
7.5 kHz
GENERAL PROCEDURE

All computations were performed on a regular personal
computer applying a FORTRAN program based on the de-
scribed formalism. Alternatively, the algorithm can be imple- 10 kHz
mented on common spreadsheet software, as described before
for the calculation of static NMR spectrd®). However, be-

cause of the necessity of an additional angular sphere for the
simulation of MAS spectra, the spreadsheet approach suffers 15 KHz
from serious storage limitations and therefore remains re-
stricted to simple problems.

An important requirement for reliable results is a suitable
selection of values for the four key parameters of the numeric
calculation: the numbers of sites,, n,, andn,, for the three
angular domains, and the length of the time intetvain the FIG. 2. Calculated MAS spectra obtained under variation of the spinning
time regime. As a first condition, the site number should Kgauency. T_hr?t;':]tseg?zf:qet;';sm is f?iﬁ:ed to fegfekSHezmaﬁgemica' st
Ia'rge' enough to avoid VI§Ib|e gaps between the angular C%Lsko;zo.p'lyhvgltmolecular motion rxesponsible fo’rgezysignificant o’Iistorch)Zn of the
tributions to the spectral lineshape. Very slow molecular tunal’iginal powder pattern is a simulated isotropic tumbling with= 7, = 0.1
bling with correlation times larger than the reciprocal chemicgs, which is approximated by jump processes between 13*13*13 sites for
shift anisotropy typically requires site numbersngf = n, = three angular domains. The original FIDs where obtained in 80,000 tim
ny > 40. As a second condition, the time intervdlhas to be intervals of 30 ns duration. All spectra are normalized to identical areas; tt
chosen short enough to allow the approximation described Bif"sit axis is stitably expanded.

EqQ. [4]. As a rule of thumb, not more than 10% of the given o ) ) ) )
magnetization of any site should be transferred in the course@Proach, which limits the simulation to a single period of th

each time interval. In any case, as a final verification of t{4AS experiment and neglects relaxation due to moleculs
result, the spectral lineshape should be checked for conv@letion (or replaces it by a phenomenological term), is strong
gence with increasing site numbers and decreasingCom- recommended13-13. For additional convenience, it may be
putation times depend strongly on the specific problem. Thégmbined with a simplified powder averaging procedur
vary between 5 min for spectra based on rapid tumbling al -19.
12 h for slow motional lineshapes with correspondingly large
site numbers. All results given in the next section were ob-
tained within less tha 3 h per spectrum. .

If the diffusive motion isgithefextremely rapid or extremerEffeCt of Rotation Frequency
slow, the described algorithm becomes inefficient because ofAn example of calculated MAS spectra obtained under var
the resulting long relaxation period. In this case, an alternatiaon of the spinning frequency is shown in Fig. 2. The inter
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action tensor is assumed to represent chemical shift anisotropy

with tensor elements,, = —15 kHz,o,, = —5 kHz, ando,,

= 20 kHz. The molecular motion responsible for a significant

distortion of the original powder pattern (see Fig. 20g@2m = = 1ms

0 kHz) is a simulated isotropic tumbling with = 7, = 0.1

ms. With 13*13*13 sites and 80,000 time intervaldt(

= 30 ns) for the complete FID, the computation time was in

the range of 25 min. All spectra are normalized; the intensity

axis is suitably expanded. 0.3 ms
As expected, the static spectrum, /R = 0 kHz) exhibits

the well-known features of a powder pattern slightly affected

by isotropic diffusion. With increasing frequency of sample

spinning, the rotational sidebands appear, move away from the

zero frequency, and lose intensity to the centerband. 0.1 ms

Variation of Tumbling Rate

The effect of various correlation times on calculated MAS
spectra is shown in Fig. 3. The tensor elements are the same as
before; the spinning frequency is set &/27 = 10 kHz.
Correlation times of isotropic tumblingr(andr,) are varied
between 0.01 and 1 ms. Again, site numbers for the angular
domains were set to 13*13*13.

Only for the largest valuer( = 7, = 1 ms) do the center- 0.03 ms
band and all sidebands appear to be well separated. Their
relative intensitiesl ,oi/lo = 0.107, ligndlo = 0.274,
| sowid1o = 0.420, and _,u4/1, = 0.049 are ingood accor-
dance with values determined by the procedure of Herzfeld and
Berger 6), which yieldsl oq/1o = 0.113,1 44/l = 0.279, 0.01 ms
| owidlo = 0.426, andl ,u4/l, = 0.053. Following the :
proposition by Maricq and Wauglb), the linewidth of the \

0.06 ms

centerband can be used to determine the correlation time of the oSS e : . el
isotropic diffusion, as its dependence on the tumbling rate is I S T8 9

S|gn|f|cant within the given time scale. FIG. 3. Simulated MAS spectra obtained under variation of the tum-

. o bling rate. Again, the interaction tensor is assumed to represent chemic
Simulated Off-Angle Spinning shift anisotropy with tensor elements, = —15 kHz, o, = —5 kHz, and

= 20 kHz. The spinning frequency is set ®/27m = 10 kHz.
In most cases, spectroscopists deal with numerous pOter@é\Irelatlon times of isotropic tumblingr(= 7, = r,) are varied between
sources of linewidth variation. Typical examples may be .01 and 1 ms; the motion is approximated in 13*13+*13 sites for the thre

complete suppression of dipolar coupling and conformatioratigular domains. The spectra are derived from FIDs calculated in 80,0(

isomerization. Therefore, it is desirable to create experimentiPs of 30 ns duration.

conditions that lead to spectral features that reflect motional

parameters more significantly than just the linewidth. One

possibility is to apply sample rotation at an offset to the magRutation times frm 1 h to almos 3 h depending on the

angle (see, for exampl€4—27. A small offset results in tumbling rate. The second left sideband, the centerband, a

spectra with centerbands roughly resembling the lineshapgg second right sideband of each resulting spectrum are d

obtained under static conditions. However, as the overall linelayed separately; both sidebands are magnified by a factor

width is significantly reduced, they still offer the advantages @0 for better resolution.

improved signal-to-noise ratio and reduced overlap of adjacentn this case, the spectra not only differ in the linewidth of the

signals. signal, but also show significant variation in characteristi
Figure 4 shows calculated results based on parameters gifeaiures. The lineshape of the centerband deviates strong

before g« = —15 kHz,o,, = —5 kHz, ando,, = 20 kHz, from the lineshapes of the sidebands, which is explained by

/27 = 10 kHz), but with a rotation angle ¢f = 50° instead angular dependence of the sideband intensities. A comparis

of 54.7° and for correlation times= 7, = 7, of 0.3 to 10 ms. with Fig. 3 also shows that the sensitive time scale has shifte

The site numbers vary from 17*17*17 to 27*27*27 and comtoward slower motions. This indicates the partial averaging ¢
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_second left sideband, x 10 centerband, x 1 second right sideband, x 10

e _/\

0.3 ms ‘J A
| : , N e | )

t { T 1 t 1

kHz |26 23 207‘ 14,6 3 0 -3 -6|-14 -17 -20 -23 -26

FIG. 4. Simulated spectra for sample spinning at a tilt angl@ ef 50° for various tumbling rates between 0.3 and 10 ms. The second left sideband, the centert
and the second right sideband of each resulting spectrum are shown separately to improve resolution; the sidebands are magnified by a factatiaf par&maters
are as in Figs. 2 and ¥, = —15 kHz,0,, = —5 kHz, ando,, = 20 kHz, /2 = 10 kHz), except for the rotation angle (50° instead of 54.7°), correlation time
(= = 7, vary from 0.3 to 10 ms), and site numbers (see text).
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